
INTRODUCTION
For various reasons your TYPO3 installation may over time accumulate data with integrity problems
or data you wish to delete completely.
For instance, why keep old versions of published content? Keep that in your backup - don't load
your running website with that overhead!
Or what about deleted records? Why not fush them - they also fll up your database and flesystem
and most likely you can rely on your backups in case of an emergency recovery?
Also, relations between records and fles inside TYPO3 may be lost over time for various reasons. If
your website runs as it should such "integrity problems" are mostly easy to automatically repair by
simply removing the references pointing to a missing record or fle.
However, it might also be "soft references" from eg. typolinks (<link 123>...</link>) or a fle
references in a TypoScript template (something.fle = fleadmin/template/miss_me.jpg) which are
missing. Those cannot be automatically repaired but the cleanup script incorporates warnings that
will tell you about these problems if they exist and you can manually fx them.
This script provides solutions to these problems by offering an array of tools that can analyze your
TYPO3 installation for various problems and in some cases offer fxes for them. Also third party
extensions can plug additional functionality into the script.

PREPARATIONS:
THERE IS ABSOLUTELY NO WARRANTY associated with this script! It is completely on your OWN RISK
that you run it. It may cause accidential data loss due to software bugs or circumstances that it
does not know about yet - or data loss might happen due to misuse!

ALWAYS make a complete backup of your website! That means:
* Dump the complete database to an SQL fle. This can usually be done from the command line like
this:

mysqldump [database name] -u [database user] -p --add-drop-table > ./mywebsite.sql
* Save all fles in the webroot of your site. I usually do this from the command line like this:

tar czf ./mywebsite.tgz [webroot directory of your site]

Before running with the --AUTOFIX option ALWAYS make sure to add the parameter "--dryrun" to
see what would be fxed.

Also, NEVER BYPASS the REFERENCE INDEX CHECK if --AUTOFIX is used for those tools which require a
clean reference index.

It could be a good idea to run a myisamchk on your database just to make sure MySQL has
everything pulled together right. Something like this will do:

myisamchk [path_to_mysql_databases]/[database_name]/*.MYI -s -r

RUNNING the SCRIPT:
The "[base command]" is:

[typo3_site_directory]/typo3/cli_dispatch.phpsh lowlevel_cleaner

Try this frst. If it all works out you should see a help-screen. Otherwise there will be instructions
about what to do. For instance, you will have to create a backend user, "_cli_lowlevel", with any

random password since you never need to log in with the user. Never mind permissions, they are
not important since this script will force the user to run as "admin" in "Live" workspace.
You can use the script entirely by following the help screens. However, through this document you
get some idea about the best order of events since they may affect each other.

For each of the tools in the test you can see a help screen by running:
[base command] [toolkey]

Example with the tool "orphan_records":
[typo3_site_directory]/typo3/cli_dispatch.phpsh lowlevel_cleaner orphan_records

SUGGESTED ORDER OF CLEAN UP:
The suggested order below assumes that you are interested in running all these tests. Maybe you
are not! So you should check the description of each one and if there is any of the tests you wish
not to run, just leave it out. It kind of gets simpler that way since the complexity mostly is when
you wish to run all tests successively in which case there is an optimal order that ensures you don't
have to run the tests all over again.

[base command] orphan_records -r --AUTOFIX
- As a beginning, get all orphaned records out of the system since you probably want to.

Since orphan records may keep some missing relations from being detected it's a good idea to get
them out immediately.

[base command] versions -r --AUTOFIX
- Flush all published versions now if you like. Published versions may also keep references

to records which could affect other tests, hence do it now if you want to.

[base command] tx_templavoila_unusedce -r --AUTOFIX
- (Assumes usage of "TemplaVoila" extension!)
- This should be done AFTER fushing published versions (since versions could reference

elements that might be safe to remove)
- This should be done BEFORE fushing deleted versions (since this tool will create new

deleted records), given that you want to completely fush them of course.
- You should run it over again until there remains no more unused elements. You need to do

this because deleting elements might generate new unused elements if the now-deleted elements
had references.

[base command] double_fles -r --AUTOFIX
- Fix any fles referenced twice or more before you delete records (which could potentially

delete a fle that is referenced by another fle).

[base command] deleted -r --AUTOFIX
- Flush deleted records. As a rule of thumb, tools that create deleted records should be run

before this one so the deleted records they create are also fushed (if you like to of course)

[base command] missing_relations -r --AUTOFIX
- Remove missing relations at this point.
- If you get an error like this; "t3lib_refndex::setReferenceValue(): ERROR: No reference

record with hash="132ddb399c0b15593f0d95a58159439f" was found!" just run the test again until
no errors occur. The reason is that another fxed reference in the same record and feld changed the
reference index hash. Running the test again will fnd the new hash string which will then work for
you.

[base command] cleanfexform -r --AUTOFIX
- After the "deleted" tool since we cannot clean-up deleted records and to make sure

nothing unimportant is cleaned up

[base command] rte_images -r --AUTOFIX
- Will be affected by fushed deleted records, versions and orphans so must be run after any

of those tests.

EXECUTED ANYTIME:
These can be executed anytime, however you should wait till all deleted records and versions are
fushed so you don't waste system resources on fxing deleted records.

[base command] missing_fles -r --AUTOFIX
[base command] lost_fles -r --AUTOFIX

NIGHTLY REPORTS OF PROBLEMS IN THE SYSTEM:
If you wish to scan your TYPO3 installations for problems with a cronjob or so, a shell script that
outputs a report could look like this:

#!/bin/sh
/[WEBROOT_ABS_PATH]/typo3/dummy_4.0/typo3/cli_dispatch.phpsh lowlevel_cleaner

orphan_records -r -v 2 -s
/[WEBROOT_ABS_PATH]/typo3/dummy_4.0/typo3/cli_dispatch.phpsh lowlevel_cleaner

versions -r -v 2 -s
/[WEBROOT_ABS_PATH]/typo3/dummy_4.0/typo3/cli_dispatch.phpsh lowlevel_cleaner

tx_templavoila_unusedce -r --refndex update -v 2 -s
/[WEBROOT_ABS_PATH]/typo3/dummy_4.0/typo3/cli_dispatch.phpsh lowlevel_cleaner

double_fles -r --refndex update -v 2 -s
/[WEBROOT_ABS_PATH]/typo3/dummy_4.0/typo3/cli_dispatch.phpsh lowlevel_cleaner deleted

-r -v 1 -s
/[WEBROOT_ABS_PATH]/typo3/dummy_4.0/typo3/cli_dispatch.phpsh lowlevel_cleaner

missing_relations -r --refndex update -v 2 -s
/[WEBROOT_ABS_PATH]/typo3/dummy_4.0/typo3/cli_dispatch.phpsh lowlevel_cleaner

cleanfexform -r -v 2 -s
/[WEBROOT_ABS_PATH]/typo3/dummy_4.0/typo3/cli_dispatch.phpsh lowlevel_cleaner

rte_images -r --refndex update -v 2 -s
/[WEBROOT_ABS_PATH]/typo3/dummy_4.0/typo3/cli_dispatch.phpsh lowlevel_cleaner

missing_fles -r --refndex update -v 2 -s
/[WEBROOT_ABS_PATH]/typo3/dummy_4.0/typo3/cli_dispatch.phpsh lowlevel_cleaner

lost_fles -r --refndex update -v 2 -s

You may wish to set the verbosity level (-v) to "3" instead of "2" as in the case above, depending on
how important you consider the warnings.
You might also wish to disable tests like "deleted" which would report deleted records - something
that might not warrant a warning, frankly speaking...
If you append "--AUTOFIX --YES" to each test it will actually perform clean up operations after
checking, however it is NOT RECOMMENDED to do that as a nightly cron-job! In addition you should
study what repair operations each test does to your system before using it!

ADDING YOUR OWN TOOLS TO THE TEST:
You can plug additional analysis tools into the cleaner script. All you need to do is create a class
with a few specifc functions and confgure the cleaner to use it. You should encapsulate your class
in an extension (as always).
In the steps below, substitute these strings with corresponding values:

- YOUREXTKEYNOUS = Your extension key, no underscores!
- YOUREXTKEY = Your full extension key
- CLEANERTOOL = Name prefx for your cleaner module

STEP1: Set up your class as a tool for the cleaner:
- In the "ext_localconf.php" fle of your extension, add this:

$TYPO3_CONF_VARS['EXTCONF']['lowlevel']['cleanerModules']
['tx_YOUREXTKEYNOUS_CLEANERTOOL'] =

array('EXT:YOUREXTKEY/class.YOUREXTKEYNOUS_CLEANERTOOL.php:tx_YOUREXTKEYNOUS_CLEANERTOO
L');

- In your extension, create this PHP fle:
YOUREXTKEY/class.YOUREXTKEYNOUS_CLEANERTOOL.php

- Finally, make sure to "Clear cache in typo3conf/" after having done this!

STEP2: Build your cleaner class:
- In the new PHP fle, create a class with these basic functions:

class YOUREXTKEYNOUS_CLEANERTOOL extends tx_lowlevel_cleaner_core {

/**
 * Constructor
 */
function YOUREXTKEYNOUS_CLEANERTOOL() {

parent::tx_lowlevel_cleaner_core();

// Setting up help:
$this->cli_options[] = array('--option1 value', 'Description...');
$this->cli_options[] = array('--option2 value', 'Description...');

$this->cli_help['name'] = 'YOUREXTKEYNOUS_CLEANERTOOL -- DESCRIPTION
HERE!';

$this->cli_help['description'] = trim('LONG DESCRIPTION HERE');

$this->cli_help['examples'] = 'EXAMPLES HERE';
}

/**
 * Analyze and return result
 */
function main() {

// Initialize result array:
$resultArray = array(

'message' => $this->cli_help['name'].
chr(10).chr(10).
$this->cli_help['description'],

'headers' => array(
'SOME_ANALYSIS_1' =>

array('HEADER','DESCRIPTION',VERBOSITY_LEVEL 0-3),
'SOME_ANALYSIS_2' =>

array('HEADER','DESCRIPTION',VERBOSITY_LEVEL 0-3),
'SOME_ANALYSIS_...' =>

array('HEADER','DESCRIPTION',VERBOSITY_LEVEL 0-3),
),
'SOME_ANALYSIS_1' => array(),
'SOME_ANALYSIS_2' => array(),
'SOME_ANALYSIS_...' => array(),

);

// HERE you run your analysis and put result into
// $resultArray['SOME_ANALYSIS_1']
// $resultArray['SOME_ANALYSIS_2']
// $resultArray['SOME_ANALYSIS_...']

return $resultArray;
}

/**
 * Mandatory autofx function
 */
function main_autoFix($resultArray) {

// HERE you traverse the result array and AUTOFIX what can be fxed
// Make sure to use $this->cli_noExecutionCheck() - see examples from

bundled tools
}

}

STEP3: Develop your tool to do something...
- You should now be able to see your tool appear in the list of tools and you should see output
from it when you choose it.

- Make sure to study the bundled tools from EXT:lowlevel/clmods/. Try to deliver the same high
quality of documentation and coding style from there. In particular how the constructor is used to
set help-message information.
- Also, take a look at t3lib_cli which is the very base class - you can use the functions in there in
your script.

